Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Oceans ; 124(3): 1544-1565, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865970

RESUMO

The Amundsen Sea Polynya (ASP) is distinguished by having the highest net primary production per unit area in the coastal Antarctic. Recent studies have related this high productivity to the presence of fast-melting ice shelves, but the mechanisms involved are not well understood. In this study we describe the first numerical model of the ASP to represent explicitly the ocean-ice interactions, nitrogen and iron cycles, and the coastal circulation at high resolution. The study focuses on the seasonal cycle of iron and carbon, and the results are broadly consistent with field observations collected during the summer of 2010-2011. The simulated biogeochemical cycle is strongly controlled by light availability(dictated by sea ice, phytoplankton self-shading, and variable sunlight). The micronutrient iron exhibits strong seasonality, where scavenging by biogenic particles and remineralization play large compensating roles. Lateral fluxes of iron are also important to the iron budget, and our results confirm the key role played by inputs of dissolved iron from the buoyancy-driven circulation of melting ice shelf cavities (the "meltwater pump"). The model suggests that westward flowing coastal circulation plays two important roles: it provides additional iron to the ASP and it collects particulate organic matter generated by the bloom and transports it to the west of the ASP. As a result, maps of vertical particulate organic matter fluxes show highest fluxes in shelf regions located west of the productive central ASP. Overall, these model results improve our mechanistic understanding of the ASP bloom, while suggesting testable hypotheses for future field efforts.

2.
Science ; 358(6367): 1149-1154, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191900

RESUMO

Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and "omics" data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean.


Assuntos
Redes e Vias Metabólicas/genética , Metagenômica , Consórcios Microbianos/genética , Água do Mar/microbiologia , Oceano Atlântico , Fenômenos Bioquímicos/genética , Metagenoma , Modelos Biológicos , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 105(30): 10460-5, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18647838

RESUMO

The fresh water discharged by large rivers such as the Amazon is transported hundreds to thousands of kilometers away from the coast by surface plumes. The nutrients delivered by these river plumes contribute to enhanced primary production in the ocean, and the sinking flux of this new production results in carbon sequestration. Here, we report that the Amazon River plume supports N(2) fixation far from the mouth and provides important pathways for sequestration of atmospheric CO(2) in the western tropical North Atlantic (WTNA). We calculate that the sinking of carbon fixed by diazotrophs in the plume sequesters 1.7 Tmol of C annually, in addition to the sequestration of 0.6 Tmol of C yr(-1) of the new production supported by NO(3) delivered by the river. These processes revise our current understanding that the tropical North Atlantic is a source of 2.5 Tmol of C to the atmosphere [Mikaloff-Fletcher SE, et al. (2007) Inverse estimates of the oceanic sources and sinks of natural CO(2) and the implied oceanic carbon transport. Global Biogeochem Cycles 21, doi:10.1029/2006GB002751]. The enhancement of N(2) fixation and consequent C sequestration by tropical rivers appears to be a global phenomenon that is likely to be influenced by anthropogenic activity and climate change.


Assuntos
Atmosfera/química , Dióxido de Carbono/metabolismo , Água do Mar/química , Animais , Oceano Atlântico , Bermudas , Carbono/química , Meio Ambiente , Efeito Estufa , Nitrogênio/química , Rios , Estações do Ano , Simbiose , Temperatura , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...